Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose Homeostasis
نویسندگان
چکیده
Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of FOXO family transcription factors. Loss of class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of class IIa HDACs in mouse models of type 2 diabetes ameliorates hyperglycemia, suggesting that inhibitors of class I/II HDACs may be potential therapeutics for metabolic syndrome.
منابع مشابه
Metabolic Homeostasis: HDACs Take Center Stage
Hormonal regulation of glucose and lipid metabolism is pivotal for metabolic homeostasis and energy balance. Two studies in this issue of Cell (Mihaylova et al., 2011 and Wang et al., 2011) introduce a new conserved signaling mechanism controlling catabolic gene expression: class IIa histone deacetylases (HDACs) regulate Foxo activity in Drosophila and mice.
متن کاملThe Metabolic Regulator Histone Deacetylase 9 Contributes to Glucose Homeostasis Abnormality Induced by Hepatitis C Virus Infection.
Class IIa histone deacetylases (HDACs), such as HDAC4, HDAC5, and HDAC7, provide critical mechanisms for regulating glucose homeostasis. Here we report that HDAC9, another class IIa HDAC, regulates hepatic gluconeogenesis via deacetylation of a Forkhead box O (FoxO) family transcription factor, FoxO1, together with HDAC3. Specifically, HDAC9 expression can be strongly induced upon hepatitis C v...
متن کاملNew role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases.
Class IIa histone deacetylases (HDACs) are found both in the cytoplasm and in the nucleus where they repress genes involved in several major developmental programs. In response to specific signals, the repressive activity of class IIa HDACs is neutralized through their phosphorylation on multiple N-terminal serine residues and 14-3-3-mediated nuclear exclusion. Here, we demonstrate that class I...
متن کاملRole of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy
Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes:...
متن کاملRoles and Targets of Class I and IIa Histone Deacetylases in Cardiac Hypertrophy
Cardiac hypertrophy occurs in association with heart diseases and ultimately results in cardiac dysfunction and heart failure. Histone deacetylases (HDACs) are post-translational modifying enzymes that can deacetylate histones and non-histone proteins. Research with HDAC inhibitors has provided evidence that the class I HDACs are pro-hypertrophic. Among the class I HDACs, HDAC2 is activated by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 145 شماره
صفحات -
تاریخ انتشار 2011